STANDARD SET-B SET

(4)

KENDRIYA VIDYALAYA SANGATHAN, JAIPUR REGION First Pre-Board EXAM 2023-24

C,	4/	881	'

SUBJECT: MATHEMATICS - STANDARD (041)

Duration: 3 Hours

Max, Marks: 80

General Instructions:

LThis Question Paper has 5 Sections A, B, C, D and E.

2. Section A has 20 MCQs energing 1 mark each

3. Section B has 5 questions carrying 02 marks each.

4. Section C has 6 questions enrrying 03 marks each.

5. Section D has 4 questions enrying 05 marks each.

6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts

of the values of 1, 1 and 2 marks each respectively.

7.All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3

marks and 2 Questions of 2 marks has been provided. An internal choice has been

provided in the 2marks questions of Section E

8.Draw neat figures wherever regulred. Take π =22/7 wherever required if not stated.

1000000	SECTIONA	
21675111	Section A consists of 20 questions of 1 mark each.	
1,		1
	HCF (a, b) is (a) xy (b) xy^2 (c) x^3y^3 (d) x^2y^2	
2,	Nature of roots of quadratic equation $2x^2 - 4x + 3 = 0$ is (a) real (b) equal (c) not real (d) none of them	1
3.	If $\triangle ABC \sim \triangle EDF$, then which of the following is not true? (a) BC, EF = AC, FD (b) AB, EF = AC, DE (c) BC, DE = AB, EF (d) BC, DE = AB, FD	1
4,	If the distance between the points $(2, -2)$ and $(-1, x)$ is 5, one of the values of x is $(a) -2$ $(b) 2$ $(c) -1$ $(d) 1$	1
5.	The zeroes of the polynomial $x^2 - 3x - m(m + 3)$ are (a) m, m + 3 (b) -m, m + 3 (c) m, - (m + 3) (d) -m, - (m + 3)	1
6.	The value of k for which the pair of equation $kx - y = 2$ and $6x - 2y = 3$ has unique solution (a) $k = 3$ (b) $k \neq 3$ (c) $k \neq 0$ (d) $k = 0$	1
7.	In figure, $\angle BAC = 90^{\circ}$ and $AD \perp BC$. Then, (a) BD . CD = BC ² (b) AB . AC = BC ² (c) BD . CD = AD ² (d) AB . AC = AD ²	1
8.	Find the greatest number of 5 digits, that will give us remainder of 5, when divided by 8 and 9 respectively.	1
	(a) 99931 (b) 99931 (c) 99941 (d) 99951	
9.	Two circles touch each other externally at C and AB is common tangent of circles, then $\angle ACB$ is (a) 70° (b) 60° (c) 100° (d) 90°	1
10.	If $x = a \cos \theta$ and $y = b \sin \theta$, then the value of $b^2x^2 + a^2y^2$ is (a) $a^2 + b^2$ (b) a^2/b^2 (c) a^2b^2 (d) None of these	1
11.	Given that $\sin \alpha = 1/2$ and $\cos \beta = 1/2$, then the value of $(\beta - \alpha)$ is (a) 0° (b) 30° (c) 60° (d) 90°	1
12	If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36	1
13.	The ratio of outer and inner perimeters of circular path is 23:22. If the path is 5 m wide, the diameter of the inner circle is (a) 55 m (b) 110 m (c) 220 m (d) 230 m	1

				V
14.	If the circumference of a circle a	nd the perimeter of a square are equ	ual, then	
14.	(a) Area of the circle = Area of t	he square		No.
	(b) Area of the circle > Area of the	he square		/ &
	(b) Area of the circle Area of the	he square		-
	(c) Area of the circle < Area of the	the square	of the circle and square	1
	(d) Nothing definite can be said	about the relation between the areas	of the enere and square.	1
		To 1 The state of heigh		
15.		52 cards. The probability of being	a red face card is	
	(a) 3/26 (b) 3/13	(c) 2/13	(d) 1/2	
16.		is		
	(a) $1\sqrt{2}$ (b) $\sqrt{2}$	(c) √3/2	(d) 1	
17.	Consider the following distribution	1:		
	Marks obtained	Number of students		
	More than or equal to 0	63		
	More than or equal to 10	58		
	More than or equal to 20	55		
	More than or equal to 30	51		
	More than or equal to 40	48		- 1
	More than or equal to 50	42		- 1
	the frequency of the class 30-40 is	12		
		()		
18.		(c) 51	(d) 3	
16.	volume and surface area of a soli	d hemisphere are numerically equal.	What is the diameter of	1
	nemisphere?			
	(a) 9 units (b) 6 units	(c) 4.5 units	(d) 18 units	
	ACCEPTION DE LOCALE		.,	
	ASSERTION REASON BASED	QUESTIONS:		1
	In the question number 19 and 20), a statement of Assertion(A) is follo	wed by a statement of Reason (R).	
	Choose the correct allswer out of	the following choices		
1	(a)Both (A) and (R) are true and	(R) is the correct explanation of (A).		
	(D)Both A and (R) are true and (J	R) is not the correct explanation of (A).	A).	
	(c)(A) is true but (R) is false.			
10	(d)(A) is false but (R) is true.			
19.	Assertion (A): The point (0, 4) lie	es on y-axis.		1
	Reason (R): The y co-ordinate of	the point on x-axis is zero		1
20.	Assertion (A): 6 ⁿ never ends with	the digit zero, where n is natural num	nher	1
	Reason (R): Any number ends wi	th digit zero, if its prime factor is of t	he form 2 ^m v 5 ⁿ where m =	1
	are natural numbers	e and the prime factor is of t	ne form 2 x 3, where m, n	
L		SECTION B		
	Section P			
21.	If the system of equations 2x 1 2-	consists of 5 questions of 2 ma	irks each.	
	then find a and b.	= 7 and $(a + b)x + (2a - b)y = 21$ has	infinitely many solutions,	2
22.				
22.	of AD	R = 4.5 cm, AQ = 6 cm, AB = 5 cm, AB = 5 cm	AC = 10 cm. Find the length	2
	Δ		the tengur	-
1 1	$\widehat{\wedge}$			
	/ \			
	/			
	PRQ			
	B D	C		
-	Find the length of the tangent from	an external met in D		
23.	circle of radius 12 cm.	an external point P at a distance of 2	0 cm from the centre of a	2
	CITCLE OF FACILITY TE CITI.		or u	~
				1

in the		
24.	Simplify: $\frac{\tan^2 \theta}{1+\tan^2 \theta} + \frac{\cot^2 \theta}{1+\cot^2 \theta}$	
	1+ $\tan^2\theta$ $\frac{1}{1+\cot^2\theta}$	2
	$7\sin^2 A + 3\cos^2 A = 4$, then find tanA	
25	Find the area of the	
25	Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also, find the area of the corresponding major sector. (Use $\pi = 3.14$)	1
	corresponding major sector. (Use $\pi = 3.14$)	2
	What is the smaller to the OR	
	What is the angle subtended at the centre of a circle of radius 10 cm by an arc of length 5π cm?	
	SECTION C	
	Section C consists of 6 questions of 3 marks each	-
26.	1 our bens ton at an interval of 8, 12, 15 and 18 seconds respectively. All the four begin to tall	3
	together. Find the number of times they foll together in one hour excluding the one at the start	3
27.	If the zeroes of the polynomial $x^2 + px + q$ are double in value to the zeroes of $2x^2 - 5y - 3$, then	3
	find the values of p and q	
	OR	
	Find the quadratic polynomial sum and product of whose zeros are -1 and -20 respectively. Also	
-	find the zeroes of the polynomial so obtained.	
28.	1 - 1.5 in the fatio of 1 . 5. if 5 is added to both the humbers, the fatio becomes 1 . 2.	3
20	Find the numbers.	
29.	and given rights, the is a chord of length o chi of a chord of radius 5 cm. The tangents to the	3
	circle at A and B intersect at P. Find the length of AP.	
	A	
	/ 5 cm/	
	(O 8 8 cm) > P	
	B	
	OR	
	In the below figure, two equal circles, with centres O and O', touch each other at X. OO' produced	
	meets the circle with centre O' at A. AC is tangent to the circle with centre O, at the point C. O'D is	
	perpendicular to AC. Find the value of $\frac{DO'}{CO}$.	
	C	
į.		
	A = 0	
30.	3 - 2	3
	If $\tan \theta = \frac{a}{b}$, prove that $\frac{a \sin \theta - b \cos \theta}{a \sin \theta + b \cos \theta} = \frac{a^2 - b^2}{a^2 + b^2}$	
	asin $\theta + b \cos \theta = a^2 + b^2$	
-		
31.	Two dice are thrown at the same time. What is the probability that the sum of the two numbers	3
	appearing on the top of the dice is	
	(i) 5? (ii) 10? (iii) at least 9?	

ADD THE REST	elementaria errespo delle risura din elementaria compresso di distri		And the second s	SE	CTION	D	OTHER DESIGNATION OF THE PERSON OF THE PERSO			170	
MERCHANICO .	with the second of the second	Se	ction D co	onsists of	4 questio	ons of 5 n	narks eac	ch	120	V	
32.	A motorboat we same spot, in a A takes 6 days can finish it in	those speed total time less than th	l in still wat of 3 hours 4 ne time take	er is 9 km/ 15 minutes. en by B to f	h, goes 15k Find the sp OR Inish a pice	am downstr peed of the se of work,	eam and co stream, If both A a	omes back t		5	
33,	3. State and prove Basic Proportional Theorem.										
34.	A toy is in the form of a hemisphere surmounted by a right circular cone of the same base radius as that of the hemisphere. If the radius of the base of the cone is 21 cm and its volume is 2/3 of the volume of the hemisphere, calculate the height of the cone and the surface area of the toy. OR A vessel full of water is in the form of an inverted cone of height 8 cm and the radius of its top, which is open, is 5 cm. 100 spherical lead balls are dropped into the vessel. One fourth of the water flows out of the vessel. Find the radius of a spherical ball.										
33,	If the median of value of x and	y?			and sum of	all the freq	uencies is 1	40. What i	s the	5	
	Class	15 – 25	25 – 35	35 – 45	45 – 55	55 – 65	65 – 75	75 – 85	85 – 95		
	Frequency	8	10	X	25	40	y	15	7		
				SE	CTION I	E				-	
		Sect	ion E con	sists of 3	Case Stu	dies of 4 r	narks eac	·h			
36.	Manpreet Kau	r is the natio	onal record	holder for v	vomen in	Print transport					

Manpreet Kaur is the national record holder for women in the shot-put discipline. Her throw of 18.86m at the Asian Grand Prix in 2017 is the maximum distance for an Indian female athlete. Keeping her as a role model, Sanjitha is determined to earn gold in Olympics one day. Initially her throw reached 7.56m only. Being anathlete in school, she regularly practiced both in the mornings and in the evenings and was able to improve the distance by 9cm every week. During the special camp for 15 days, she started with 40 throws and every day kept increasing the number of throws by 12 to achieve this remarkable progress

- (i) How many throws Sanjitha practiced on 11th day of the camp?
- (ii) What would be Sanjitha's throw distance at the end of 6 weeks?

OR

When will she be able to achieve a throw of 11.16 m?

(iii) How many throws did she do during the entire camp of 15 days?

37. The top of a table is shown in the figure given below:

1

2

	↑Y	7				-	_	=	_									
				$\frac{B}{B}$	(Calle	Maria II	27.16	C	1				$\overline{}$					
					TOX .				1							_		
			X		M	果		1	1									
11	A		T	X	<u>`</u>	-	\bot	4								_		
11			學學	\leftarrow	1	4							D				1	
11	++	25 m	10.14	1-		1	1		. 7	-	O		~			_	-	
11	\dashv	A COVA	TANG.			1	1-1				11/23					_		
		100	(改造)		-	[1]	1		\top							_	1	
	+++	- Long	S			1	1	_	+		P							-
		1		(5/1)	1		1		7		KANT.	/	E			_	1	
	++			關了	,			1									1	
			1	R	1			S C	2	/							-	
					差数				7								1	1
	1			G	-]	F									
	0			– Sca	le:	1 5	1110	,	1	77.00				X				
					<u>.</u>		144.		1	ui.	111.						1	
	On the	basis	s of in	ıforma	tion	give	n, ar	iswe	r tl	he f	ollo	wine	ים כ	iesti	ions		.	
											0110	******	5 41	icst.	10113	٠.		
	(i) Find th	ie dist	tance	betwee	n po	ints	A an	dB.										
	(ii) Write	the co	o-ordi	inates (of the	mid	poi	nt of	lin	e se	gm	ent jo	oini	ng p	oin	ts N	I and Q.	
	coord	linate	(4, 2)	ine ong).	gm, a	.nu x	, y a:	as p	ut a	11011	g G	r an	a G	В, Т	nen	lino	d the point denoted by	1
			(-, -)	,-						OF	₹					•		1
	Find t	he co	ordin	ates of	H, G	and	also	find	th	e di	star	ice b	etw	een	the	m.		2
38.					ea co	ast o	bser	ves t	wo	shi	ps i	n the	sea	ı, bo	oth t	he s	ships are in same straight	
	path one l	behin	d the	other.			<u>^</u>											
					45	₹\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\												
				608	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	//	7											
				/		7	4											
			/			2 man												
			Ι,	-/														
			183	4	<u> </u>				25									
	В			A			\mathbf{C}	o .									\$ 11 1 a a 4 a a a 1 a a a 1 a	
	If the	obser	ver is	on his	build	ding	of he	ight	20	met	ters	(inc	ludi	ng c	bse	rvei	r) and he observes the angle	
	of dep	ressio	on of t	two shi	ps as	45°	and	00. 1	esp	peci	1061	y.						
-	On th	ie bas	sis of	above	info	rmat	ion	answ	er	the	fol	lowi	ng (ques	stion	ns.		
4	1																1 12 / v 1 1 1 - 1 1	1
	(i) If a po	erson	obser	rves a s	hip v	vhos	e ang	gle o	fde	epre	ssic	n is	60°	the	n hc	ow r	nuch distance is the ship	1
1.5	away	fron	n him'	?	41	- ahi	n wh	ose s	anσ	de o	f de	enres	sioi	is 4	45°	the	n how much distance that	1
				1. :	n													
1	WILL TO			aniac t	he ch	ip w	hose	angl	e o	f de	pre	ssio	n ch	ang	es fi	rom	60° to 30° then how far	2
	be s	hip fr	om th	ne obse	rver	if the	obs	ervei	is	at 2	zo n	1 01 1	neig	ht (i	incl	udir	ng him)?	
	1										()K							
				ce betv	een '	tne s	nıps	A an	u E	WI د	IICII	uic a	mgi	C 01	ucj) i C3	sions are 60° and 45°	
	resp	ective	ay.														575	

SET II

KENDRIYA VIDYALAYA SANGATHAN, JAIPUR REGION MARKING SCHEME

1 Pre-Board EXAMINATION: 2023-24

CLASS X Max.Marks: 80

SUBJECT: MATHEMATICS - STANDARD (041)
Duration: 3 hrs

	SECTION A	
Sec	ction A consists of 20 questions of 1 mark ea	ch.
	В	1
	С	1
	C	1
	В	1
	В	1
	В	1
	C	1
	C	1
	D	1
).	C	1
L.	B	1
2.	В	1
3.	C	1
1.	В	1
5.	A	1
5.	В	1
7.	D .	1
3.	A B	1
9.	A	1
0.	A	
	SECTION B	

		404
21.	Ans: Given system of equations	
	2x + 3y = 7(i) $(a + b)x + (2 a - b) y = 21(ii)$	
	Equations have infinitely many solutions, if $\frac{2}{a+b} = \frac{3}{2a-b} = \frac{7}{21} = \frac{1}{3} \Rightarrow \frac{2}{a+b} = \frac{1}{3}$	1
	$\rightarrow 6 = 2 + b \rightarrow 2 + b = 6$ (i)	
	and $\frac{3}{2a-b} = \frac{1}{3} \Rightarrow 2a-b = 9$ (ii)	
	2a-b 3 On solving equation (i) and (ii), we get a = 5, b = 1	1
22.		
22.	Ans: In $\triangle ABC$, $\frac{AP}{AB} = \frac{3}{5}$ (i)	
	$\frac{AQ}{AC} = \frac{6}{10} = \frac{3}{5}$ (ii)	
	From (i) and (ii), we get $\frac{AP}{AB} = \frac{AQ}{AC} \Rightarrow PQ \parallel BC$	1
	In $\triangle ABD$, PR BD $\Rightarrow \frac{AP}{AB} = \frac{AR}{AD} \Rightarrow \frac{3}{5} = \frac{4.5}{AD} \Rightarrow AD = 7.5cm$	1
	AD AD 5 AD	1
23.	Ans: Let PA be the tangent to the circle of point A.	
	20 cm 12 cm	1/2
	P A Here, $OP = 20$ cm and $OA = 12$ cm	1/2
	Since PA is tangent of A, therefore $OA = PA$. In right angled triangle $\triangle OAB$, $OP^2 = PA^2 + OA^2$ (Using Pythagoras Theorem)	
	$\Rightarrow (20)^2 = PA^2 + (12)^2 \Rightarrow PA^2 = 400 - 144 = 256$	1
	⇒ PA = 16 cm Hence, Length of tangent be 16 cm.	1
24		
	Ans: $\frac{\tan^2 \theta}{1 + \tan^2 \theta} + \frac{\cot^2 \theta}{1 + \cot^2 \theta} = \frac{\tan^2 \theta}{\sec^2 \theta} + \frac{\cot^2 \theta}{\cos ec^2 \theta}$	1
	$= \frac{\sin^2 \theta}{\cos^2 \theta} \times \frac{\cos^2 \theta}{1} + \frac{\cos^2 \theta}{\sin^2 \theta} \times \frac{\sin^2 \theta}{1} = \sin^2 \theta + \cos^2 \theta = 1$	
	$-\frac{1}{\cos^2\theta} - \frac{1}{1} + \frac{1}{\sin^2\theta} - \frac{1}{1} = \sin^2\theta + \cos^2\theta - 1$ OR	1
	If $7 \sin^2 A + 3 \cos^2 A = 4$, then find tan A	
	Ans: Given, $7\sin^2 A + 3\cos^2 A = 4$ Dividing both sides by $\cos^2 A$, we get	N.
	$7 \tan 2A + 3 = 4 \sec^2 A \ [\because \sec^2 \theta = 1 + \tan^2 \theta \]$	1/2
	$\Rightarrow 7 \tan^{2}A + 3 = 4(1 + \tan^{2}A)$ $\Rightarrow 7 \tan^{2}A + 3 = 4 + 4 \tan^{2}A$	1
	$\Rightarrow 3\tan^2 A = 1 \Rightarrow \tan^2 A = 1/3 \Rightarrow \tan A = 1/\sqrt{3}$	1/2
		i

SECTION C Section C consists of 6 questions of 3 marks each

١		Section C consists of o questions of 5 marks each	
1	26.	Ans: Prime factorisation of the given numbers are:	
		$8 = 2 \times 2 \times 2 = 2^3$	
		$12 = 2 \times 2 \times 3 = 2^2 \times 3^1$	1
		$15 = 3 \times 5 = 3^1 \times 5^1$	
		$18 = 2 \times 3 \times 3 = 2^1 \times 3^2$	
		LCM (8, 12, 15 and 18) = $2^3 \times 3^2 \times 5^1 = 8 \times 9 \times 5 = 360$ sec = 6 min	1
		\therefore Four bells toll together in one hour = $60 \div 6 = 10$ times.	1

1

1

27. Let
$$\alpha$$
 and β be the zeroes of $2x^2 - 5x - 3$.

$$\therefore \alpha + \beta = \frac{5}{2}, \quad \alpha\beta = \frac{-3}{2}$$

As per the question,

It is given that 2α , 2β are the zeroes of $x^2 + px + q$

$$\therefore 2\alpha + 2\beta = -p$$

$$2(\alpha + \beta) = -p \Rightarrow 2 \times \frac{5}{2} = -p$$

$$\Rightarrow 2(\alpha + \beta) = -p \Rightarrow 2 \times \frac{5}{2} = -p \Rightarrow p = -5$$

Also,
$$(2\alpha)(2\beta) = q \implies 4\alpha\beta = q$$

$$\Rightarrow \alpha\beta = \frac{q}{4} \Rightarrow \frac{-3}{2} = \frac{q}{4} \Rightarrow q = -6$$

OR

Ans: Let α and β be the zeros of the quadratic polynomial.

∴ Sum of zeros,
$$\alpha + \beta = -1$$
 and product of zeros, α . $\beta = -20$

Now, quadratic polynomial be

$$x^2 - (\alpha + \beta) \cdot x + \alpha \beta = x^2 - (-1) x - 20 = x^2 + x - 20$$

Now, for zeroes of this polynomial

$$x^2 + x - 20 = 0 \Rightarrow x^2 + 5x - 4x - 20 = 0$$

$$\Rightarrow x(x+5) - 4(x+5) = 0 \Rightarrow (x+5)(x-4) = 0$$

$$\Rightarrow x = -5, 4$$

28.	Ans: Let two numbers are x and y respectively such that its fraction = x/y .	
	According to the question, $\frac{x}{v} = \frac{1}{3}$	
0	$\frac{y}{3}$	
	$\Rightarrow 3x = y \Rightarrow y = 3x(i)$	1
	Also, $\frac{x+5}{y+5} = \frac{1}{2}$	
	$\Rightarrow 2x + 10 = y + 5 \Rightarrow 2x - y = -5(ii)$ Putting the value of y=3x in (ii), we get	1
	$2x - 3x = -5 \Rightarrow -x = -5 \Rightarrow x = 5$	1/2
	Putting the value of $x = 5$ in (i), we get $y = 3 \times 5 = 15$	/2
	Hence, Numbers are 5 and 15.	1/2
29.	Ans: $AB = 8 \text{ cm} \Rightarrow AM = 4 \text{ cm}$	/2
	$\therefore OM = \sqrt{(5^2 - 4^2)} = 3 \text{ cm}$	1/2
	A	
	5 cm/	
	D G G G G G G G G G G G G G G G G G G G	
	B	
-	Let $AP = y \text{ cm}$, $PM = x \text{ cm}$	
	∴ ∆OPA is a right angle triangle	
	$\Rightarrow x^2 + 9 + 6x = y^2 + 25(i)$	1/2
	Also, $x^2 + 42 = y^2$ (ii)	
	$\Rightarrow x^2 + 6x + 9 = x^2 + 16 + 25$ \Rightarrow 6x = 32	1/2
	$\Rightarrow x = 32/6 = 16/3 \text{ cm}$	1/2
	$\therefore y^2 = x^2 + 16 = 256/9 + 16 = 400/9$	1/2
	$\Rightarrow y = 20/3 \text{ cm}$ OR	1/2
	Ans: AC is tangent to circle with centre O. Thus $\angle ACO = 90^{\circ}$.
	In ΔAO'D and ΔAOC	1/2
	$\angle ADO' = \angle ACO = 90^{\circ}$ $\angle A = \angle A \text{ (Common)}$	
	$\therefore \Delta AO'D \sim \Delta AOC \text{ (By AA similarity)}$	1
	$\Rightarrow \frac{AO'}{AO} = \frac{DO'}{CO}$,
		1/2
	Now, $AO = AO' + O' X + XO = 3r$ DO' = r = 1	1
	$\therefore \frac{DO'}{CO} = \frac{r}{3r} = \frac{1}{3}$	•

1			
	30.	oin O	
1		Ans: $LHS = \frac{a\sin\theta - b\cos\theta}{a\sin\theta + b\cos\theta} = \frac{a\frac{\sin\theta}{\cos\theta} - b}{a\frac{\sin\theta}{\cos\theta} + b} = \frac{a\tan\theta - b}{a\tan\theta + b}$	
		Ans: $LHS = \frac{a \sin \theta - \theta \cos \theta}{a \cos \theta} = \frac{a \tan \theta - b}{a \cos \theta}$	
		$a\sin\theta + b\cos\theta = a\sin\theta + b = a\tan\theta + b$	1
		$\cos \theta$	
		2 . 2	
		$= \frac{a \tan \theta - b}{a \tan \theta + b} = \frac{a \times \frac{a}{b} - b}{a \times \frac{a}{b} + b} = \frac{\frac{a^2 - b^2}{b}}{\frac{a^2 + b^2}{a^2 + b^2}} = \frac{a^2 - b^2}{a^2 + b^2} = RHS$	
		$=\frac{a}{a} + \frac{b}{a} = \frac{b}{a} = \frac{a}{a} = \frac{a}{a} = RHS$	
		$a \tan \theta + b$ $a \times \frac{a}{a} + b$ $a^2 + b^2$ $a^2 + b^2$	1+1
		b h	
	31.	Ans: Total number of outcomes $= 36$	
		(i) Number of outcomes in which the sum of the two numbers is $5 = 4$	
		∴ Required Probability = $4/36 = 1/9$	1
		(ii) Number of outcomes in which the sum of the two numbers is $10 = 3$	
		$\therefore \text{ Required Probability} = 3/36 = 1/12$	
		(i) Number of outcomes in which the sum of the two numbers is at least 9 = 10	1
		\therefore Required Probability = $10/36 = 5/18$	1
		SECTION D	
		Section D consists of 4 questions of 5 marks each	
	32.	Ans: Let speed of stream be x km/h.	
		Given, Speed of boat = 9 km/h	
		Distance covered upstream = 15 km	
		Distance covered downstream = 15 km Total time taken = 3 hours 45 minutes = 15/4 hours	
		Now, Speed of boat upstream = $9 - x \text{ km/h}$	
		Speed of boat downstream = $9 + x \text{ km/h}$	1
		According to the question, $\frac{15}{9+x} + \frac{15}{9-x} = \frac{15}{4}$	1
		$\Rightarrow \frac{1}{9+x} + \frac{1}{9-x} = \frac{1}{4} \Rightarrow \frac{9-x+9+x}{(9+x)(9-x)} = \frac{1}{4} \Rightarrow \frac{18}{(9+x)(9-x)} = \frac{1}{4}$	1
		$\Rightarrow \frac{18}{81 - x^2} = \frac{1}{4}$	
		$\Rightarrow 81 - x^2 = 72$	1
	,	$\Rightarrow x^2 = 9$	
	1	$\rightarrow v = 3$ (v is the speed of the stream and thus cannot have negative value)	1 1

 \Rightarrow x = 3 (x is the speed of the stream and thus cannot have negative value) Thus, the speed of the stream is 3 km/hr.

OR

1

		W
	Ans: Let B takes a total of x days to complete the work alone.	
	So as know that A takes 6 days less than B we can write that A takes	
	x - 6 days to complete the work alone.	1
	Work done by B in a day = $\frac{1}{x}$	
	Work done by A in a day = $\frac{1}{x-6}$	
	According to the question, $\frac{1}{x} + \frac{1}{x-6} = \frac{1}{4} \Rightarrow \frac{x-6+x}{x(x-6)} = \frac{1}{4} \Rightarrow \frac{2x-6}{x(x-6)} = \frac{1}{4}$	1 1%
	$\begin{vmatrix} x & x - 6 & 4 & x(x - 6) & 4 & x(x - 6) & 4 \\ \Rightarrow 8x - 24 = x^2 - 6x & & & & \end{vmatrix}$	1/2
	$\Rightarrow x^2 - 14x + 24 = 0$	
	$\Rightarrow x^2 - 12x - 2x + 24 = 0$	1
4	$\Rightarrow x(x - 12) - 2(x - 12) = 0$	
	$\Rightarrow x = 2, 12$	
	We will reject $x = 2$ as $x - 6$ will become negative.	1
	Hence, B takes 12 days to complete the work alone.	1
33.	Statement	1/2
33.	Construction, To Prove, Figure	1
	Correct Proof	11/2
		21/2
34.		
	According to question, Volume of cone = $\frac{2}{3}$ × volume of hemisphere	
	3	
	$\Rightarrow \frac{1}{3}\pi r^2 h = \frac{2}{3} \times \frac{2}{3}\pi r^3 \Rightarrow h = \frac{4}{3}r = \frac{4}{3} \times 21 = 28cm$	1
	Slant height, $l = \sqrt{r^2 + h^2} = \sqrt{21^2 + 28^2} = 35 cm$	
	Total surface area = $CSA_{cone} + CSA_{hemisphere} = \pi rl + 2\pi r^2 = \pi r(l + 2r)$	1 1
	$= \frac{22}{7} \times 21 \times (42 + 35) = 22 \times 3 \times 77 = 5082 cm^2$	2
	OR	
1		1 1

Ans: Height (h) of the cone $= 8$	cm and radius (r) of the cone = 5 cm
	the conc – 5 cm

: Volume of water flows out =
$$\frac{1}{4}$$
 × volume of cone

$$=\frac{1}{4}\times\frac{1}{3}\pi r^2h=\frac{1}{12}\times\pi\times25\times8$$

$$\therefore$$
 Volume of water flows out =100× volume of spherical ball

$$\Rightarrow \frac{1}{12} \times \pi \times 25 \times 8 = 100 \times \frac{4}{3} \pi R^3$$

$$\Rightarrow R^3 = \frac{1}{8} \Rightarrow R = \frac{1}{2}cm = 0.5cm$$

Variable	Frequency	c.f.
15-25	8	8
25-35	10	18
35-45	x	18 + x
45-55	25	43 + x
55-65	40	83 + x
65-75	y	83 + x + y
75-75	15	98 + x + y
85-95	7	105 + x + y
Total	105 + x + y	

$$\Rightarrow x + y = 35 \text{ (i)}$$
Here, Median = 58

Then, median class is 55-65, $l = 55$, $\frac{N}{2} = \frac{140}{2} = 70$

Then, c.f. = 43 + x f = 40

Median = $l + \left(\frac{\frac{N}{2} - c.f.}{f}\right) \times h$

1

1

1

2

1/2

1/2

1

1

1

1

1

$$\Rightarrow 58 = 55 + \left(\frac{70 - 43 - x}{40}\right) \times 10$$

$$\Rightarrow 3 = \frac{27 - x}{4} \Rightarrow 12 = 27 - x$$

And, 105 + x + y = 140

$$\Rightarrow x = 27 - 12 = 15 \Rightarrow y = 35 - 15 = 20$$

SECTION E

Section E consists of 3 Case Studies of 4 marks each

36. (i) Number of throws during camp.
$$a = 40$$
; $d = 12$

$$t_{11} = a + 10d = 40 + 10 \times 12$$

$$= 160 throws$$

(ii)
$$a = 7.56 \text{ m}; d = 9 \text{cm} = 0.09 \text{ m}$$

$$n = 6$$
 weeks

$$t_n = a + (n-1) d$$

$$= 7.56 + 6(0.09)$$

$$= 7.56 + 0.54$$

Sanjitha's throw distance at the end of
$$6$$
 weeks = 8.1 m

OR

	a = 7.56 m; d = 9 cm = 0.09 m	
	$t_n = 11.16 \text{ m}$	
	$t_n = a + (n-1) d$	1
	11.16 = 7.56 + (n-1)(0.09)	
	3.6 = (n-1)(0.09)	
	$n-1 = \frac{3.6}{0.09} = 40$	1
	$ \begin{array}{c} 0.09 \\ n = 41 \end{array} $	
	Saniitha's will be able to throw 11.16 m in 41 weeks.	
	Samula's will be able to throw 11.10 mm 11 weeks.	
	(iii) $a = 40$; $d = 12$; $n = 15$	
	$S_n = \frac{n}{2} [2a + (n-1) d]$	
	$S_n = \frac{15}{2} [2(40) + (15-1)(12)]$	1/2
		1
	$=\frac{15}{2}[80+168]$	
	$=\frac{15}{2}$ [248] =1860 throws	
	2 [2.10] 2000 11110113	1/2
37.	Ans: (i) Distance between A(1, 9) and B(5, 13) is	
	$=\sqrt{(5-1)^2+(13-9)^2}=\sqrt{16+16}=\sqrt{32}=4\sqrt{2}units$	1
	(ii) Midpoint of the line segment joining M(5, 11) and Q(9, 3) is given by	
	(5+9 11+3) (14 14) (7.7)	1
	$\left(\frac{5+9}{2}, \frac{11+3}{2}\right) = \left(\frac{14}{2}, \frac{14}{2}\right) = (7,7)$	1
	(iii) If G is (0, 0) then Q is (4, 2).	
	OR	
	As per graph the coordinate of H is (1, 5) and of G is (5, 1).	2
	Distance HG = $\sqrt{(5-1)^2 + (1-5)^2} = \sqrt{16+16} = \sqrt{32} = 4\sqrt{2}units$	
38	OC = CO =	
1	(i) $\tan 60^{\circ} = \frac{OC}{AC} \Rightarrow \sqrt{3} = \frac{20}{AC} \Rightarrow AC = \frac{20}{\sqrt{3}} = \frac{20\sqrt{3}}{3} m = 11.55m$	
	O N/	
	60°	
	20 m	1
	60°	
	C	
-	C: 450 OC 1 20 BC 20	
	(ii) $\tan 45^\circ = \frac{OC}{BC} \Rightarrow 1 = \frac{20}{BC} \Rightarrow BC = 20m$	
	0	
	45°	
	20 m	
d	45°	1
176	C B	-
,	(iii) $\sin 30^\circ = OC/OD$ — Q	
1	½ = 20/OD	
	OD = 40 m	
	C 30° D	
	OR Distance between two ships = BC – AC = 20-11.55 = 8.45 m	2
	I Dictance Detween two snips = $RC = \Delta C = 20.11 \text{ S} = X.45 \text{ m}$	I