<u>Arrays</u>

- 1. An array A[10][20] is stored in memory with each element requiring 2 bytes of storage. If the base address of array in the memory is 400 , determine the location of A[5][10] when array is stored in
 - (a) Row Major order
 - (b) Column Major order
- 2. Write a user defined function named New() which takes a two dimensional array as an argument and the output shows all zeroes in the upper half.

For eg if the array entered is

	6	3	2	1	8
	9	4	7	9	3
A=	5	7	0	5	3
	6	9	3	2	1
	7	5	4	3	9

The output will be -----

0	0	0	0	0
9	0	0	0	0
5	7	0	0	0
6	9	3	0	0
7	5	4	3	0

PROGRAMS

- 3. Do all sorting and merging techniques as given in the book
- 4. WAP to :
 - (i) add two matrices
 - (ii) subtract two matrices
 - (iii) Display the row sum and column sum of the matrices
 - (iv) Display the transpose of a matrix
 - (v) Display the diagonal elements of a matrix